
SYNTHESIS OF 4-AMINOSUGAR DERIVATIVES THROUGH ALLYL CYANATE TO ISOCYANATE REARRANGEMENT

The O-allyl to N-allyl rearrangements are reliable methods for introducing nitrogen moieties on allyl alcohol skeletons with high atom economy and stereocontrol. The allyl cyanate/isocyanate rearrangement¹ is particularly attracting, for several advantages, including use of manageable carbamate precursors and mild metal-free reaction conditions, high degree of stereocontrol and versatility of the resulting isocyanates. The transformation of carbamate to the desired products involves three steps, which are usually performed in one-pot: an initial dehydration of the carbamate to the corresponding elusive cyanate is followed by spontaneous [3,3]-sigmatropic rearrangement to the isocyanate, which is conveniently trapped with a nucleophile to afford the final products. These rearrangement reactions of glycals have recently been reported to afford aminosugars by our research group.^{2,3}

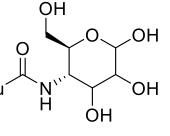
Application of this innovative strategy to levoglucosenone-derived carbamate 2 provided 4-aminosugar derivatives. The rearrangement allowed to install a nitrogen functionality at C-4 to afford the final products **3**. After dihydroxylation of the double bond and opening of the 1,6-bridge, new precursor of 4-aminosugars at C-4 were obtained in a stereocontrolled manner.⁷

Allyl cyanate to isocyanate rearrangement

SYNTHESIS OF 4	-AMIN
Fmoc O N'	OsO _{4,} NMC acetone: H ₂ r.t., 4 d, 599
6	
1) CF ₃ COOH, r.t., <u>1 h</u> 2) Ac ₂ O, r.t., 23 h, 13%	OAc ΟΝ ^{Υ''} 21 α-a

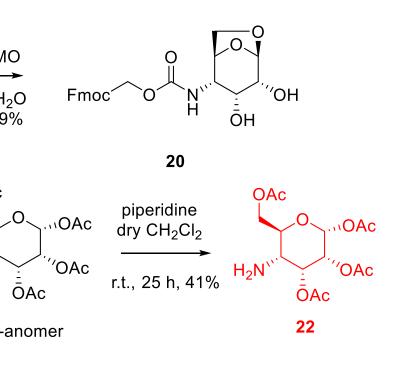
	Nucleophile
	octylamine
Nu AMINES (3 eq.)	propargylamine
	dodecylamine
Nu THIOLS (3 eq.)	thiophenol
	<i>p</i> -thiocresol

$ \begin{array}{c} 1) CBr_4, PPh_3, \\ dry NEt_3, dry CH_2Cl_2 \\ 2) rearrangement \\ -20 ^{\circ}C, 40 \text{ min.} \\ \end{array} $

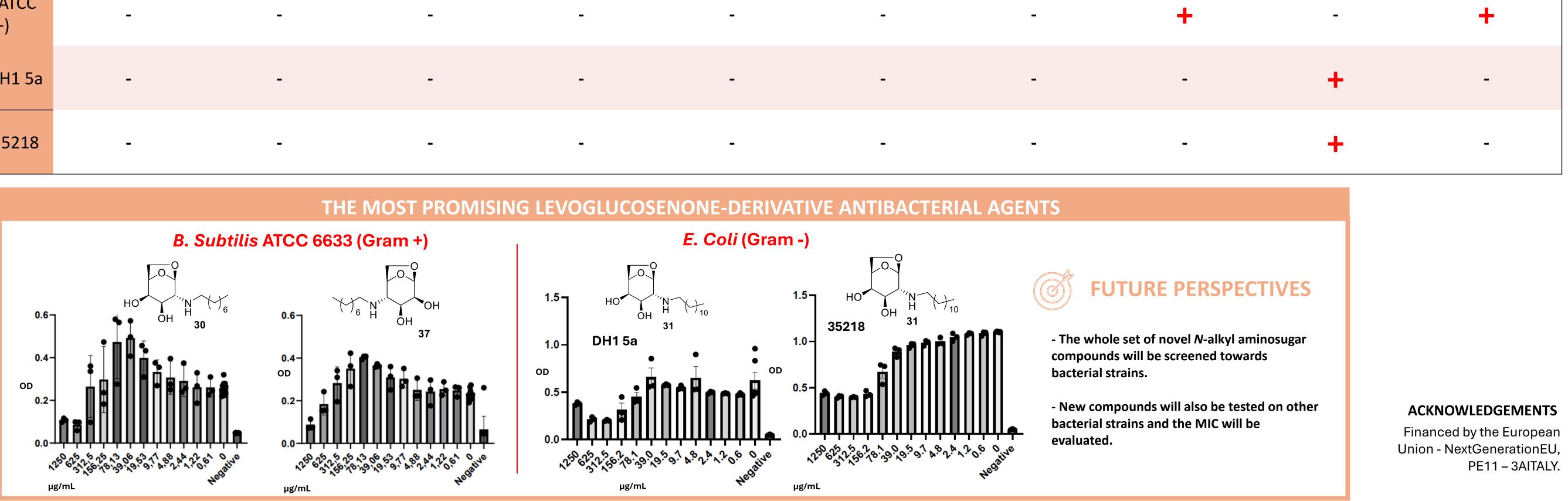

	Nucleophile	Yield	Products
	methanol	63%	
	propargyl alcohol	70%	
Nu ALCOHOLS (3 eq.)	9-fluorenylmethanol	60%	
	3-buten-1-ol	52%	
	allyl alcohol	45%	
	phenol	61%	
	benzyl alcohol	71%	Ph Ph
	trans-2,4-hexadien-1-ol	55% -	
	octanol	54%	$ \begin{array}{c} 0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	dodecanol	57%	$(1)_{10} \xrightarrow{0}_{\text{H}} \xrightarrow{13}_{13} \xrightarrow{0}_{\text{H}} \xrightarrow{0}_{13} \xrightarrow{0}_{\text{H}}$
Nu AMINES	butylamine (10 eg.)	50%	

(10 eq.)

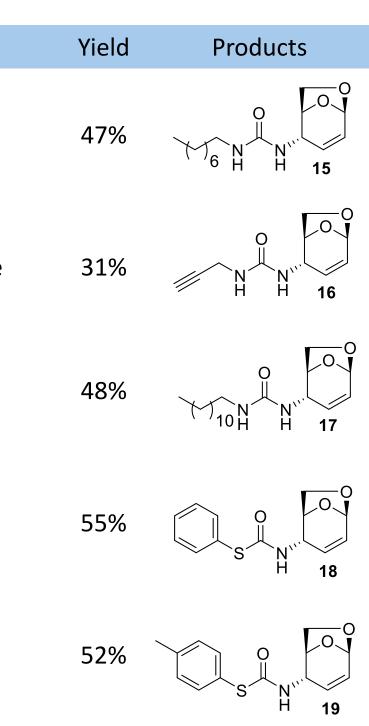
Exploring the potential of Levoglucosenone: from cellulose biomass to the synthesis of aminosugar derivatives


<u>Debora Pratesi</u>^a, Francesca Clemente^a, Massimiliano Marvasi^b, Andrea Goti^a, Francesca Cardona^a and Camilla Matassini^a

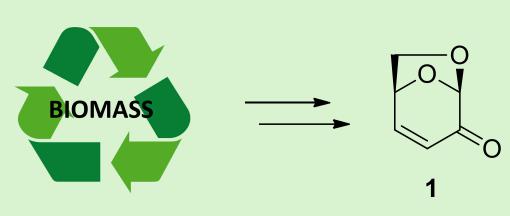
^a Dipartimento di Chimica 'Ugo Schiff' (DICUS), Università degli Studi di Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino (FI), Italy. ^b Dipartimento di Biologia (BIO), Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy. Email: <u>debora.pratesi@unifi.it</u>


precursors of 4-aminosugars

IOSUGAR DERIVATIVES

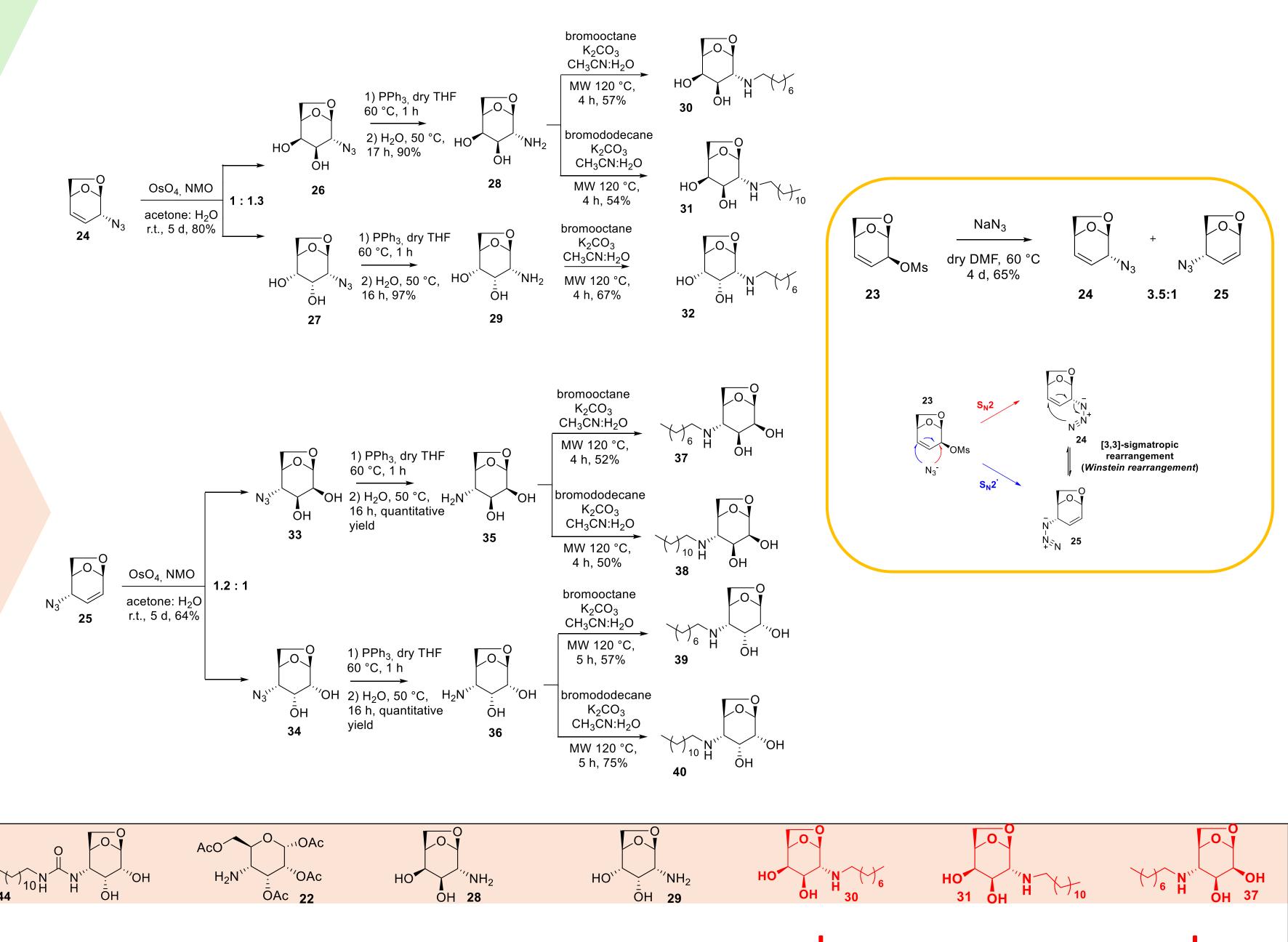


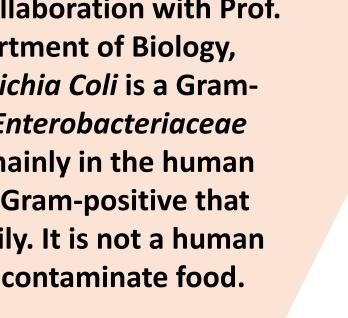
ALL BACTERIAL GROWTH INHIBITION TESTS:


Bacterial strains		0 Ph 0 N 41		N ^{,,,,} H
<i>acillus Subtilis</i> ATCC 6633 (Gram +)		-		-
scherichia	DH1 5a	-		-
<i>Coli</i> (Gram -)	35218	-		-

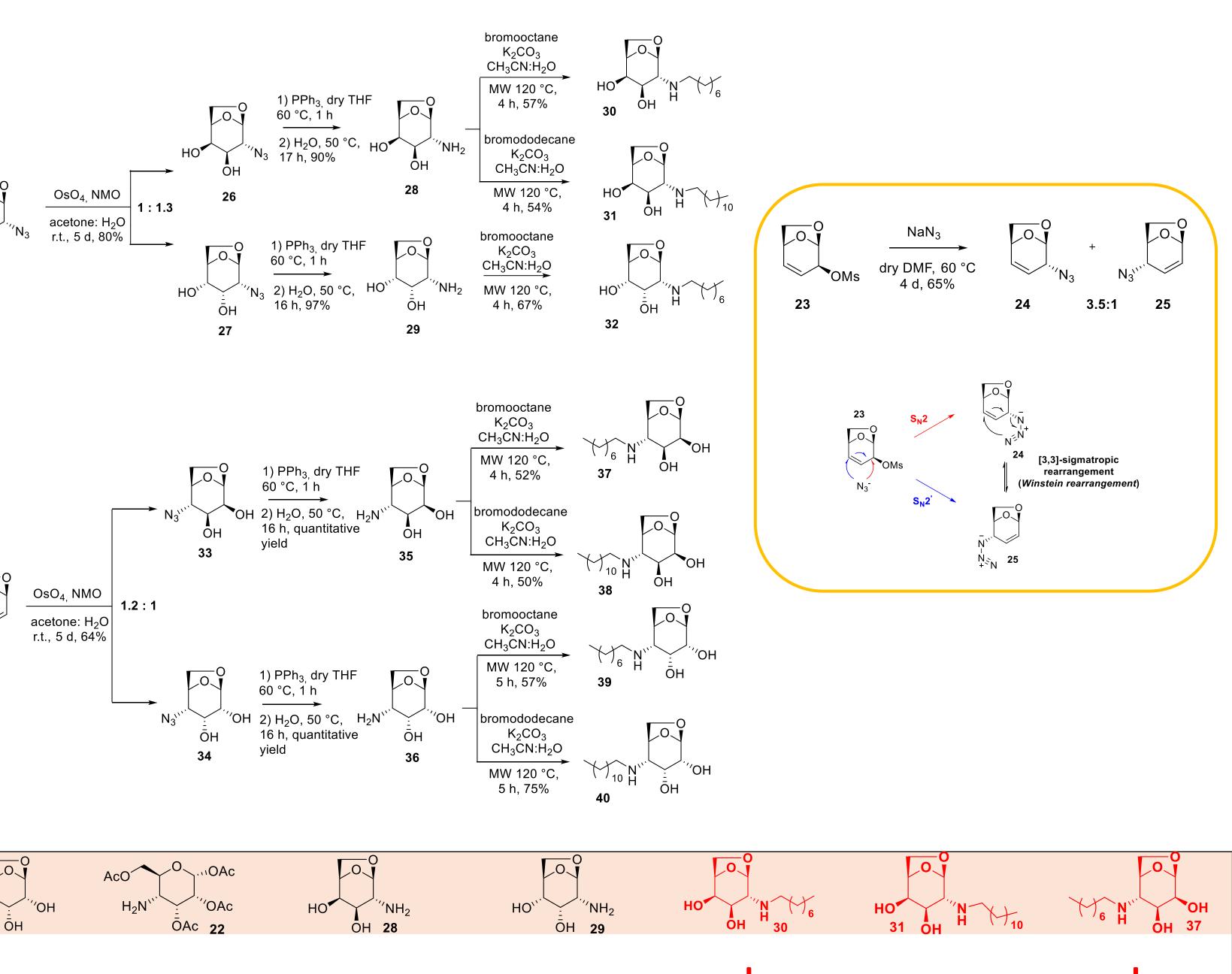
[1] Y. Ichikawa, Synlett 2007, 2007, 2927–2936; [2] S. Mirabella, G. Petrucci, C. Faggi, C. Matassini, F. Cardona, A. Goti, Eur. J. Org. Chem. 2022, e202200804; [4] A. M. Sarotti, R. A. Spanevello, A. G. Suàrez, Green Chem. 2007, 9, 1137–1140; [5] Z. J. Witczak, R. Bielski, Carbohydr. Chem. 2016, 42, 344-367; [6] A. Gagneuz, S. Winstein, W.G. Young, J. Am. Chem. Soc. 1960, 82, 5956–5957; [7] D. Pratesi, paper in preparation

LEVOGLUCOSENONE


Pyrolysis is one of the most promising technologies for using biomass. In particular, levoglucosenone (1), a small molecule which may be used for the synthesis of biologically relevant compounds, is obtained in 3-7% yield from the pyrolysis of cellulose, as well as of urban and industrial residual materials containing cellulose such as waste paper.⁴ For example, this bicyclic ketone allows to obtain aminosugars, compounds widespread in nature possessing a variety of biological roles.⁵



BACTERIAL GROWTH INHIBITION TESTS


The 4-aminosugar derivativ have been tested on different bacterial strains including Escherichia Coli and **Bacillus Subtilis thanks to the collaboration with Prof.** Massimiliano Marvasi (Department of Biology, University of Florence). Escherichia Coli is a Gramnegative that belongs to the *Enterobacteriaceae* family. It's possible to find it mainly in the human intestine. Bacillus Subtilis is a Gram-positive that belongs to the *Bacillaceae* family. It is not a human pathogen but can degrade or contaminate food.

Thanks to the high functionalization of levoglucosenone, we decided to elaborate this compound obtaining an aminosugar scaffold bearing a long lipophilic alkyl chain. For nitrogen insertion we exploited a S_N2 nucleophilic substitution which led to the formation of the desired product 24 and to the corresponding rearranged compound 25 via [3,3]-sigmatropic rearrangement reaction and S_N2' reaction.⁶ This has led to the development of two synthetic strategies for obtaining final products with a nitrogen atom substituted for C-2 and C-4. In particular, through a subsequent step of double bond dihydroxylation and N-alkylation with a long alkyl chain, the final derivatives were obtained.

s and the N-alkyl

-0 / //он н	о 10°43 Н ОН ОН ОН	о 10 Н N, ¹⁰ 44	Aco $H_2 N^{1} + \frac{1}{2} O Ac$	HO OH 28	HO
	-	-	-	-	
	-	-	-	-	

SYNTHESIS OF *N*-ALKYL AMINOSUGAR DERIVATIVES

REFERENCES